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Abstract. This paper summarizes theoretical predictions for the density and isospin dependence of the
nuclear mean field and the corresponding nuclear equation of state. We compare predictions from micro-
scopic and phenomenological approaches. An application to heavy-ion reactions requires to incorporate
these forces into the framework of dynamical transport models. Constraints on the nuclear equation of
state derived from finite nuclei and from heavy-ion reactions are discussed.

PACS. 21.65.+f Nuclear matter – 21.60.-n Nuclear structure models and methods – 25.75.-q Relativistic
heavy-ion collisions – 24.10.Cn Many-body theory

1 Introduction

Heavy-ion reactions provide the only possibility to reach
nuclear-matter densities beyond saturation density ρ0 '
0.16 fm−3. Transport calculations indicate that in the low
and intermediate energy range Elab ∼ 0.1–1AGeV nu-
clear densities between 2–3ρ0 are accessible while the high-
est baryon densities (∼ 8ρ0) will probably be reached
in the energy range of the future GSI facility FAIR be-
tween 20–30AGeV. At even higher incident energies trans-
parency sets in and the matter becomes less baryon rich
due to the dominance of meson production. The isospin
dependence of the nuclear forces which is at present only
little constrained by data will be explored by the forth-
coming radioactive beam facilities at FAIR/GSI [1], SPI-
RAL2/GANIL and RIA [2]. Since the knowledge of the
nuclear equation of state (EOS) at supra-normal densities
and extreme isospin is essential for our understanding of
the nuclear forces as well as for astrophysical purposes,
the determination of the EOS was already one of the pri-
mary goals when first relativistic heavy-ion beams started
to operate in the beginning of the 80s [3]. In the following,
we will briefly discuss the knowledge on the nuclear EOS
from a theoretical point of view, then turn to the real-
ization within transport models, and finally give a short
review on possible observables from heavy-ion reactions to
constrain the EOS.

2 Models for the nuclear EOS

Models which make predictions on the nuclear EOS can
roughly be divided into three classes:

a e-mail: christian.fuchs@uni-tuebingen.de

1. Phenomenological density functionals: These are mod-
els based on effective density-dependent interactions
such as Gogny [4,5] or Skyrme forces [6,7] or relativis-
tic mean-field (RMF) models [8]. The number of pa-
rameters which are fine tuned to the nuclear chart is
usually larger than six and less than 15. This type of
models allows the most precise description of finite nu-
clei properties.

2. Effective-field theory approaches: Models where the ef-
fective interaction is determined within the spirit of
effective-field theory (EFT) became recently more and
more popular. Such approaches lead to a more system-
atic expansion of the EOS in powers of density, respec-
tively, the Fermi momentum kF . They can be based on
density functional theory [9,10] or, e.g., on chiral per-
turbation theory [11–13]. The advantage of EFT is the
small number of free parameters and a correspondingly
higher predictive power. However, when high-precision
fits to finite nuclei are intended this is presently only
possible by the price of fine tuning through additional
parameters. Then EFT functionals are based on ap-
proximately the same number of model parameters as
phenomenological density functionals.

3. Ab initio approaches: Based on high-precision free-
space nucleon-nucleon interactions, the nuclear many-
body problem is treated microscopically. Predictions
for the nuclear EOS are parameter free. Examples are
variational calculations [14,15], Brueckner-Hartree-
Fock (BHF) [16–19] or relativistic Dirac-Brueckner-
Hartree-Fock (DBHF) [20–26] calculations and Green’s
functions Monte Carlo approaches [27–29].

Phenomenological models as well as EFT contain parame-
ters which have to be fixed by nuclear properties around or
below saturation density which makes the extrapolation to
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supra-normal densities somewhat questionable. However,
in the EFT case such an extrapolation is safer due to a sys-
tematic density expansion. One has nevertheless, to keep
in mind that EFT approaches are based on low-density
expansions. Many-body calculations, on the other hand,
have to rely on the summation of relevant diagram classes
and are still too involved for systematic applications to
finite nuclei.

2.1 Mean-field theory

Among non-relativistic density functionals, Skyrme func-
tionals are the ones most frequently used. The Skyrme in-
teraction contains an attractive local two-body part and
a repulsive density dependent two-body interaction which
can be motivated by local three-body forces. We will not
consider surface terms which involve gradients as well as
spin-orbit contributions since they vanish in infinite nu-
clear matter. For a detailed discussion of Skyrme func-
tionals and their relation to relativistic mean-field (RMF)
theory see, e.g., [7]. The EOS of symmetric nuclear matter,
i.e. the binding energy per particle has the simple form

E/A =
3k2

F

10M
+
α

2
ρ+

β

1 + γ
ργ , (1)

where the first term in (1) represents the kinetic energy
of a non-relativistic Fermi gas and the remaining part the
potential energy. To examine the structure of relativistic
mean-field models it is instructive to consider the sim-
plest version of a relativistic model, i.e. the σω model
of quantum hadron dynamics (QHD-I) [30]. In QHD-I
the nucleon-nucleon interaction is mediated by the ex-
change of two effective boson fields which are attributed
to a scalar σ- and a vector ω-meson. The energy density
in infinite cold and isospin-saturated nuclear matter is in
mean-field approximation given by
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where the Fermi energy is given by EF =
√

k2
F +m∗2D . We

will denote m∗D explicitly as Dirac mass in the following
in order to distinguish it from its non-relativistic coun-
terpart. The effective mass absorbs the scalar part of the
mean field m∗D = M − ΓS%S . In the limit m∗D −→ M the
first two terms in (2) provide the energy (kinetic plus rest
mass) of a non-interacting relativistic Fermi gas.

A genuine feature of all relativistic models is the fact
that one has to distinguish between the vector density
% = 2k3

F /3π
2 and a scalar density %S . The vector den-

sity is the time-like component of a 4-vector current jµ,
whose spatial components vanish in the nuclear matter
rest frame, while %S is a Lorentz scalar. The scalar den-
sity shows a saturation behavior with increasing vector
density which is essential for the relativistic saturation
mechanism. This becomes clear when the binding energy
E/A = ε/% −M is expanded in powers of the Fermi mo-

mentum kF :
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The first term in (3) contains the kinetic energy of a
non-relativistic Fermi gas followed by relativistic correc-
tions and the remaining terms are the contributions from
the mean field. In QHD-I the scalar and vector field
strengths are given by the coupling constants for the cor-
responding mesons ΓS = g2

σ/m
2
σ and ΓV = g2

ω/m
2
ω di-

vided by the meson masses. The two parameters ΓS,V
are now fitted to the saturation point of nuclear matter
E/A ' −16MeV, %0 ' 0.16 fm−3 which follows from the
volume part of the Weizsäcker mass formula. The satura-
tion mechanism requires that both coupling constants are
large. This leads automatically to the cancellation of two
large fields, namely an attractive scalar field ΣS = −ΓS%S
and a repulsive vector field ΣV = ΓV %. As a typical fea-
ture of relativistic dynamics, the single-particle potential
U = m∗D/E

∗ΣS − ΣV (E∗ =
√

k2 +m∗2D ), which is of
the order of −50MeV, results from the cancellation of
scalar and vector fields, each of the order of several hun-
dred MeV.

However, with only two parameters QHD-I provides a
relatively poor description of the saturation point with a
too large saturation density and a very stiff EOS (K =
540MeV). To improve on this, higher-order corrections
in density have to be taken into account which can be
done in several ways. In the spirit of the original Walecka
model non-linear meson self-interaction terms have been
introduced into the QHD Lagrangian [8,31]. An alterna-
tive are relativistic point-coupling models where the ex-
plicit meson exchange picture is abandoned. A Lagrangian
of nucleon and boson fields with point couplings can be
constructed in the spirit of EFT and expanded in powers
of density [9,10]. Finite-range effects from meson propa-
gators are replaced by density gradients [9,10]. A third
possibility is the density-dependent hadron field theory
DDRH [32,33]. In DDRH the scalar and vector coupling
constants are replaced by density-dependent vertex func-
tions ΓS,V (kF ). The density dependence of these renor-
malized vertices can either be taken from Brueckner calcu-
lations, thus parameterizing many-body correlations [32,
33], or be determined phenomenologically [34,35]. In all
cases additional parameters are introduced which allow a
description of finite nuclei with a precision comparable to
the best fits from Skyrme functionals. Phenomenological
density functionals provide high-quality fits to the known
areas of the nuclear chart. Binding energies and rms radii
are reproduced with an average relative error of about
∼ 1–5%. However, when the various models are extrap-
olated to the unknown regions of extreme isospin or to
super-heavies, predictions start to deviate substantially.
This demonstrates the limited predictive power of these
functionals.
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2.2 Effective-field theory

When concepts of effective-field theory are applied to
nuclear-physics problems one has to rely on a separation
of scales. EFT is based on a perturbative expansion of
the nucleon-nucleon (NN) interaction or the nuclear mean
field within power-counting schemes. The short-range part
of the NN interaction requires a non-perturbative treat-
ment, e.g., within the Brueckner ladder summation. The
philosophy behind EFT is to separate short-range corre-
lations from the long- and intermediate-range part of the
NN interaction. This assumption is motivated by the fact
that the scale of the short-range correlations, i.e. the hard
core, is set by the ρ and ω vector meson masses which
lie well above the Fermi momentum and the pion mass
which sets the scale of the long-range forces. The density
functional theory (DFT) formulation of the relativistic
nuclear many-body problem [9,10] is thereby analogous
to the Kohn-Sham approach in DFT. An energy func-
tional of scalar and vector densities is constructed which
by minimization gives rise to variational equations that
determine the ground-state densities. Doing so, one tries
to approximate the exact functional using an expansion in
classical meson fields and their derivatives, based on the
observation that the ratios of these quantities to the nu-
cleon mass are small, at least up to moderate density. The
exact energy functional which one tries to derive explic-
itly when using many-body techniques such as Brueckner
or variational approaches contains exchange correlations
and all other many-body and relativistic effects. The DFT
interpretation implies that the model parameters fitted
to nuclei implicitly contain effects of both short-distance
physics and many-body corrections.

Recently also concepts of chiral perturbation theory
(ChPT) have been applied to the nuclear many-body
problem [12,13]. Doing so, the long- and intermediate-
range interactions are treated explicitly within chiral pion-
nucleon dynamics. This allows an expansion of the energy
density functional in powers of mπ/M or in kF /M . Like
in DFT, short-range correlations are not resolved explic-
itly but handled by counter-terms (dimensional regular-
ization) [11] or through a cut-off regularization [13]. Fig-
ure 1 shows the corresponding EOS obtained from chiral
one- and two-pion exchange between nucleons. In order
to account for the most striking feature of relativistic dy-
namics, expressed by the existence of the large scalar and
vector fields, in refs. [12,13] iso-scalar condensate back-
ground nucleon self-energies derived from QCD sum rules
have been added to the chiral fluctuations. To lowest or-
der in density the QCD condensates give rise to a scalar
self-energy ΣS = −σNM/(m2

πf
2
π)%S and a vector self-

energy ΣV = 4(mu + md)M/(m2
πf

2
π)%. It is remarkable

that the total self-energies, i.e. condensates plus chiral
fluctuations, are very close to those obtained from DBHF
calculations [12,23]. The resulting EOS is also shown in
fig. 1 in addition to that obtained after fine tuning to fi-
nite nuclei. Although the original EOS (case 1) is rather
soft, the inclusion of the condensates and the adjustment
to finite nuclei results in an EOS which is finally stiff.

Fig. 1. EOS for symmetric nuclear matter obtained from chi-
ral one- and two-pion exchange (case 1, solid line), by adding
background fields from QCD sum rules (case 2, dotted line),
and finally after fine tuning to finite nuclei properties (case 3,
dashed line). The figure is taken from [12].

2.3 Ab initio calculations

In ab initio calculations based on many-body techniques
one derives the energy functional from first principles, i.e.
treating short-range and many-body correlations explic-
itly. A typical example for a successful many-body ap-
proach is Brueckner theory [16]. In the relativistic Brueck-
ner approach the nucleon inside the medium is dressed by
the self-energy Σ. The in-medium T -matrix which is ob-
tained from the relativistic Bethe-Salpeter (BS) equation
plays the role of an effective two-body interaction which
contains all short-range and many-body correlations of the
ladder approximation. Solving the BS equation the Pauli
principle is respected and intermediate scattering states
are projected out of the Fermi sea. The summation of the
T -matrix over the occupied states inside the Fermi sea
yields finally the self-energy in Hartree-Fock approxima-
tion. This coupled set of equations states a self-consistency
problem which has to be solved by iteration.

In contrast to relativistic DBHF calculations which
came up in the late 80s, non-relativistic BHF theory has
already almost half a century’s history. The first numer-
ical calculations for nuclear matter were carried out by
Brueckner and Gammel in 1958 [16]. Despite strong efforts
invested in the development of improved solution tech-
niques for the Bethe-Goldstone (BG) equation, the non-
relativistic counterpart of the BS equation, it turned out
that, although such calculations were able to describe the
nuclear saturation mechanism qualitatively, they failed
quantitatively. The results of a systematic study for a large
number of NN interactions were found to be always lo-
cated on a so-called Coester-line in the E/A-ρ plane which
does not coincide with the empirical region of saturation.
In particular, modern one-boson exchange (OBE) poten-
tials lead to strong over-binding and too large saturation
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Fig. 2. Nuclear-matter saturation points from relativistic
(full symbols) and non-relativistic (open symbols) Brueckner-
Hartree-Fock calculations based on different nucleon-nucleon
forces. The diamonds show results from variational calcula-
tions. Shaded symbols denote calculations which include 3-
body forces. The shaded area is the empirical region of sat-
uration.

densities whereas relativistic calculations do a much bet-
ter job.

Figure 2 compares the saturation points of nuclear
matter obtained by relativistic Dirac-Brueckner-Hartree-
Fock (DBHF) calculations using the Bonn potentials [36]
as bare NN interactions to non-relativistic Brueckner-
Hartree-Fock calculations for various NN interactions.
The DBHF results are taken from ref. [21] (BM) and
more recent calculations based on improved techniques are
from [23] (Tübingen). Several reasons have been discussed
in the literature in order to explain the success of the rel-
ativistic treatment. The saturation mechanisms in rela-
tivistic and non-relativistic theories are quite different. In
relativistic MFT the vector field grows linearly with den-
sity while the scalar field saturates at large densities. The
magnitude and the density dependence of the scalar and
vector DBHF self-energy is similar to MFT, i.e. the single-
particle potential is the result of the cancellation of two
large scalar and vector fields, each several hundred MeV in
magnitude (see, e.g., the effective mass in fig. 7). In BHF,
on the other hand, the saturation mechanism takes place
exclusively on the scale of the binding energy, i.e. a few
tens of MeV. It cannot be understood by the absence of a
tensor force. In particular, the second order 1-π exchange
potential (OPEP) is large and attractive at high densities
and its interplay with Pauli blocking leads finally to sat-
uration. Relativistically, the tensor force is quenched by
a factor (m∗D/M)2 and less important for the saturation
mechanism [37].

Three-body forces (3-BFs) have been extensively stud-
ied within non-relativistic BHF [18] and variational calcu-
lations [15]. The contributions from 3-BFs are in total re-
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Fig. 3. Predictions for the EOS of symmetric nuclear mat-
ter from microscopic ab initio calculations, i.e. relativistic
DBHF [23], non-relativistic BHF [18] and variational [15] cal-
culations. For comparison also soft and hard Skyrme forces are
shown.

pulsive which makes the EOS harder and non-relativistic
calculations come close to their relativistic counterparts.
The same effect is observed in variational calculations [15]
shown in fig. 3. The variational results contain boost cor-
rections (δv) which account for relativistic kinematics and
lead to additional repulsion [15]. Both, BHF [18] and the
variational calculations from [15] are based on the lat-
est AV18 version of the Argonne potential. In both cases
phenomenological 3-body forces are used, the Tucson-
Melbourne 3-BF in [18] and the Urbana IX 3-BF1 in [15].
It is often argued that in non-relativistic treatments 3-BFs
play in some sense an equivalent role as the dressing of the
two-body interaction by in-medium spinors in Dirac phe-
nomenology. Both mechanisms lead indeed to an effective
density-dependent two-body interaction V which is, how-
ever, of different origin. One class of 3-BFs involves virtual
excitations of nucleon-antinucleon pairs. Such Z-graphs
are in net repulsive and can be considered as a renor-
malization of the meson vertices and propagators. A sec-
ond class of 3-BFs is related to the inclusion of explicit
resonance degrees of freedom. The most important reso-
nance is the ∆(1232) isobar which provides at low and
intermediate energies large part of the intermediate-range
attraction. Intermediate ∆ states appear in elastic NN
scattering only in combination with at least two-isovector-
meson exchange (ππ, πρ, . . .). Such box diagrams can sat-
isfactorily be absorbed into an effective σ-exchange [36].
The maintenance of explicit ∆ degrees of freedom (DoFs)
gives rise to additional saturation, shifting the satura-
tion point away from the empirical region [20]. However,
as pointed out, e.g., in ref. [27], the inclusion of non-
nucleonic DoFs has to be performed with caution: freez-
ing out resonance DoFs generates automatically a class
of three-body forces which contains nucleon-resonance ex-

1 Using boost corrections the repulsive contributions of the
UIX interaction are reduced by about 40% compared to the
original ones in [15].
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citations. There exist strong cancellation effects between
the repulsion due to box diagrams and contributions from
3-BFs. Non-nucleonic DoFs and many-body forces should
therefore be treated on the same footing. Such a treat-
ment may be possible with the next generation of nucleon-
nucleon forces based on chiral perturbation theory [38,39]
which allows a systematic generation of three-body forces.
Next-to-leading order (NLO), all 3-BFs cancel while non-
vanishing contributions appear at NNLO.

Figure 3 compares the equations of state from the dif-
ferent approaches: DBHF from ref. [23] based the Bonn-
A interaction2 [36], BHF [18] and variational calcula-
tions [15]. The latter ones are based on the Argonne AV18

potential and include 3-body forces. All the approaches
use modern high-precision NN interactions and repre-
sent state-of-the-art calculations. Two phenomenological
Skyrme functionals which correspond to the limiting cases
of a soft (K = 200MeV) and a hard (K = 380MeV)
EOS are shown as well. In contrast to the Skyrme in-
teraction (1) where the high-density behavior is fixed by
the compression modulus, in microscopic approaches the
compression modulus is only loosely connected to the cur-
vature at saturation density. DBHF Bonn-A has, e.g., a
compressibility of K = 230MeV. Below 3ρ0, both are not
too far from the soft Skyrme EOS. The same is true for
BHF including 3-body forces.

When many-body calculations are performed, one has
to keep in mind that elastic NN scattering data constrain
the interaction only up to about 400MeV, which corre-
sponds to the pion threshold. NN potentials differ essen-
tially in the treatment of the short-range part. A model-
independent representation of the NN interaction can be
obtained in EFT approaches where the unresolved short-
distance physics is replaced by simple contact terms. In
the framework of chiral EFT the NN interaction has been
computed up to N3LO [39,40]. An alternative approach
which leads to similar results is based on renormalization
group (RG) methods [41]. In the Vlow k approach a low-
momentum potential is derived from a given realistic NN
potential by integrating out the high-momentum modes
using RG methods. At a cutoff Λ ∼ 2 fm−1 all the different
NN potential models were found to collapse to a model-
independent effective interaction Vlow k. When applied to
the nuclear many-body problem low-momentum interac-
tions do not require a full resummation of the Brueckner
ladder diagrams but can already be treated within second-
order perturbation theory [42]. However, without repul-
sive three-body-forces, isospin-saturated nuclear matter
was found to collapse. Including 3-BFs first promising re-
sults have been obtained with Vlow k [42], however, nuclear
saturation is not yet described quantitativley. Moreover,
one has to keep in mind that, due to the high-momentum
cut-offs, EFT is essentially only suitable at moderate den-
sities.

2 The high-density behavior of the EOS obtained with a dif-
ferent interaction, e.g. Bonn-B or C is very similar [23].
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phenomenological density functionals NL3 and DD-TW and
ChPT+corr. The left panel zooms the low-density range.

3 EOS in symmetric and asymmetric nuclear
matter

Figure 4 compares now the predictions for nuclear and
neutron matter from microscopic many-body calculations
—DBHF [26] and the “best” variational calculation with
3-BFs and boost corrections [15]— to phenomenological
approaches and to EFT. As typical examples for rela-
tivistic functionals we take NL3 [43] as one of the best
RMF fits to the nuclear chart and a phenomenological
density dependent RMF functional DD-TW from [34].
ChPT+corr. is based on chiral pion-nucleon dynamics in-
cluding condensate fields and fine tuning to finite nuclei
(case 3 in fig. 1). As expected, the phenomenological func-
tionals agree well at and below saturation density where
they are constrained by finite nuclei but start to deviate
substantially at supra-normal densities. In neutron matter
the situation is even worse since the isospin dependence
of the phenomenological functionals is less constrained.
The predictive power of such density functionals at supra-
normal densities is restricted. Ab initio calculations pre-
dict a soft EOS throughout the density range relevant for
heavy-ion reactions at intermediate and low energies, i.e.
up to about three times ρ0. There seems to be no way to
obtain an EOS as stiff as the hard Skyrme force shown
in fig. 3 or NL3. Since the NN scattering lenght is large,
neutron matter at subnuclear densities is less model de-
pendent. The microscopic calculations (BHF/DBHF, vari-
ational) agree well and results are consistent with “exact”
Quantum Monte Carlo calculations [29].

In isospin asymmetric matter the binding energy is
a functional of the proton and neutron densities, char-
acterized by the asymmetry parameter β = Yn − Yp
which is the difference of the neutron and proton fraction
Yi = ρi/ρ , i = n, p. The isospin dependence of the energy
functional can be expanded in terms of β which leads to
a parabolic dependence on the asymmetry parameter

E(ρ, β) = E(ρ) + Esym(ρ)β2 +O(β4) + · · · ,

Esym(ρ) =
1

2

∂2E(ρ, β)

∂β2
|β=0 = a4 +

p0

ρ2
0

(ρ− ρ0) + · · · (4)
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Fig. 5. Symmetry energy as a function of density as predicted
by different models. The left panel shows the low-density re-
gion, while the right panel displays the high-density range.

Figure 5 compares the symmetry energy predicted by the
DBHF and variational calculations to that of the empiri-
cal density functionals already shown in fig. 4. In addi-
tion, the relativistic DD-ρδ RMF functional [44] is in-
cluded. Two Skyrme functionals, SkM∗ and the more re-
cent Skyrme-Lyon force SkLya, represent non-relativistic
models. The left panel zooms the low-density region, while
the right panel shows the high-density behavior of Esym. It
is remarkable that most empirical models coincide around
ρ ' 0.6ρ0, where Esym ' 24MeV. This demonstrates that
constraints from finite nuclei are active for an average den-
sity slightly above half-saturation density. However, the
extrapolations to supra-normal densities diverge dramat-
ically. This is crucial since the high-density behavior of
Esym is essential for the structure and the stability of neu-
tron stars (see also the contribution VI.3 by Horowitz, this
topical issue [45]). The microscopic models show a den-
sity dependence which can still be considered as asy-stiff.
DBHF [26] is thereby stiffer than the variational results
of [15]. The density dependence is generally more complex
than in RMF theory, in particular at high densities where
Esym shows a non-linear and more pronounced increase.
Figure 5 clearly demonstrates the necessity to constrain
the symmetry energy at supra-normal densities with the
help of heavy-ion reactions. The hatched area in fig. 5
displays the range of Esym which has been obtained by
constructing a density-dependent RMF functional vary-
ing thereby the linear asymmetry parameter a4 from 30
to 38MeV [35]. In ref. [35] it was concluded that charge
radii, in particular the skin thickness rn− rp in heavy nu-
clei, constrain the allowed range of a4 to 32–36MeV for
relativistic functionals.

Figure 6 displays the correlation between the skin
thickness in 208Pb and a4 obtained within various models.
The skin thickness depends, however, not only on the sym-
metry energy but there exists a close correlation between
a4 and the compression modulus K [35]. This correlation
is of importance when these quantities are extracted from
finite nuclei (see the discussion by Shlomo et al., contri-
bution II.2, this topical issue [46]).
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Fig. 6. Skin thickness in 208Pb versus the linear symmetry
energy parameter a4 for various models. The figure is taken
from [10].

3.1 Effective nucleon masses

The introduction of an effective mass is a common concept
to characterize the quasi-particle properties of a particle
inside a strongly interacting medium. In nuclear physics,
different definitions of the effective nucleon mass exist
which are often compared and sometimes even mixed up:
the non-relativistic effective massm∗NR and the relativistic
Dirac mass m∗D. These two definitions are based on differ-
ent physical concepts. The non-relativistic mass parame-
terizes the momentum dependence of the single-particle
potential. The relativistic Dirac mass is defined through
the scalar part of the nucleon self-energy in the Dirac
field equation which is absorbed into the effective mass
m∗D = M +ΣS(k, kF ). The Dirac mass is a smooth func-
tion of the momentum. In contrast, the non-relativistic
effective mass —as a model-independent result— shows
a narrow enhancement near the Fermi surface due to an
enhanced level density [47]. For a recent review on this
subject and experimental constraints on m∗NR, see [48].

While the Dirac mass is a genuine relativistic quan-
tity the effective mass m∗NR is determined by the single-
particle energy

m∗NR = k[dE/dk]−1 =

[

1

M
+

1

k

d

dk
U

]−1

; (5)

m∗NR is a measure of the non-locality of the single-particle
potential U (real part) which can be due to non-localities
in space, resulting in a momentum dependence, or in time,
resulting in an energy dependence. In order to clearly
separate both effects, one has to distinguish further be-
tween the so-called k-mass and the E-mass [17]. The spa-
tial non-localities of U are mainly generated by exchange
Fock terms and the resulting k-mass is a smooth func-
tion of the momentum. Non-localities in time are gener-
ated by Brueckner ladder correlations due to the scatter-
ing to intermediate states which are off-shell. These are
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ious models.

mainly short-range correlations which generate a strong
momentum dependence with a characteristic enhancement
of the E-mass slightly above the Fermi surface [47,17,49].
The effective mass defined by eq. (5) contains both, non-
localities in space and time and is given by the product
of k-mass and E-mass [17]. In fig. 7 the non-relativistic
effective mass and the Dirac mass, both determined from
DBHF calculations [50], are shown as a function of mo-
mentum k at different Fermi momenta of kF = 1.07, 1.35,
1.7 fm−1. m∗NR shows the typical peak structure as a func-
tion of momentum around kF which is also seen in BHF
calculations [49]. The peak reflects the increase of the level
density due to the vanishing imaginary part of the opti-
cal potential at kF which is also seen, e.g., in shell model
calculations [47,17]. One has, however, to account for cor-
relations beyond mean field or Hartree-Fock in order to
reproduce this behavior. Figure 8 compares the density
dependence of the two effective masses determined at kF .
Both masses decrease with increasing density, the Dirac
mass continously, while m∗NR starts to rise again at higher
densities. Phenomenological density functionals (QHD-I,
NL3, DD-TW) yield systematically smaller values ofm∗NR

than the microscopic approaches. This reflects the lack of

non-local contributions from short-range and many-body
correlations in the mean-field approaches.

3.1.1 Proton-neutron mass splitting

A topic heavily discussed at present is the proton-neutron
mass splitting in isospin-asymmetric nuclear matter. This
question is of importance for the forthcoming new gener-
ation of radioactive beam facilities which are devoted to
the investigation of the isospin dependence of the nuclear
forces at its extremes. However, presently the predictions
for the isospin dependences differ substantially. BHF cal-
culations [18,49] predict a proton-neutron mass splitting
of m∗NR,n > m∗NR,p. This stands in contrast to relativistic

mean-field (RMF) theory. When only a vector isovector
ρ-meson is included Dirac phenomenology predicts equal
masses m∗D,n = m∗D,p while the inclusion of the scalar

isovector δ-meson, i.e. ρ + δ, leads to m∗D,n < m∗D,p [44].

When the effective mass is derived from RMF theory,
it shows the same behavior as the corresponding Dirac
mass, namely m∗NR,n < m∗NR,p [44]. Conventional Skyrme

forces, e.g. SkM∗, lead to m∗NR,n < m∗NR,p [51] while

the more recent Skyrme-Lyon interactions (SkLya) pre-
dict the same mass splitting as RMF theory. The pre-
dictions from relativistic DBHF calculations are still con-
troversial in the literature. They depend strongly on ap-
proximation schemes and techniques used to determine
the Lorentz and the isovector structure of the nucleon
self-energy. In the approach originally proposed by Brock-
mann and Machleidt [21] one extracts the scalar and
vector self-energy components directly from the single-
particle potential. Thus, by a fit to the single-particle
potential mean values for the self-energy components are
obtained where the explicit momentum dependence has
already been averaged out. In symmetric nuclear mat-
ter this method is relatively reliable but the extrapola-
tion to asymmetric matter is ambiguous [24]. Calcula-
tions based on this method predict a mass splitting of
m∗D,n > m∗D,p [52]. On the other hand, the components of
the self-energies can directly be determined from the pro-
jection onto Lorentz invariant amplitudes [20,22–24,26,
53]. Projection techniques are involved but more accurate
and yield the same mass splitting as found in RMF the-
ory when the δ-meson is included, i.e. m∗D,n < m∗D,p [22,

24,26]. Recently, also the non-relativistic effective mass
has been determined with the DBHF approach and here
a reversed proton-neutron mass splitting was found, i.e.
m∗NR,n > m∗NR,p [50]. Thus DBHF is in agreement with
the results from non-relativistic BHF calculations.

Experimentally accessible is the p-n mass splitting, or
the magnitude of the corresonding isovector effective mass
m∗V , (

β
m∗

V

= β+1

m∗

NR

− 1
m∗

NR,n

) through the electric dipole

photoabsorption cross-section, i.e. through an enhance-
ment of the Thomas-Reiche-Kuhn sum rule by the factor
m/m∗V . However, values derived from GDR measurements
range presently from m∗V /m = 0.7–1.05 [48,54,55]. The
forthcoming radioactive beam facilitites will certainly im-
prove on this not yet satisfying situation.
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3.2 Optical potentials

The second important quantity related to the momen-
tum dependence of the mean field is the optical nucleon-
nucleus potential. At subnormal densities the optical po-
tential Uopt is constrained by proton-nucleus scattering
data [56] and at supra-normal densities constraints can
be derived from heavy-ion reactions [57–59]. In a relativis-
tic framework the optical Schroedinger-equivalent nucleon
potential (real part) is defined as

Uopt = −ΣS +
E

M
ΣV +

Σ2
S −Σ2

V

2M
. (6)

One should thereby note that in the literature some-
times also an optical potential, given by the difference
of the single-particle energies in medium and free space
U = E −

√
M2 + k2 is used [57] which should be not

mixed up with (6). In a relativistic framework momentum-
independent fields ΣS,V (as, e.g., in RMF theory) lead
always to a linear energy dependence of Uopt. As seen
from fig. 9, DBHF reproduces the empirical optical po-
tential [56] extracted from proton-nucleus scattering for
nuclear matter at ρ0 reasonably well up to a laboratory en-
ergy of about 0.6–0.8GeV. However, the saturating behav-
ior at large momenta cannot be reproduced by this calcu-
lations because of missing inelasticities, i.e. the excitation
of isobar resonances above the pion threshold. When such
continuum excitations are accounted for, optical model
caculations are able to describe nucleon-nucleus scatter-
ing data also at higher energies [60]. In heavy-ion reac-
tions at incident energies above 1AGeV such a saturating
behavior is required in order to reproduce transverse flow
observables [59]. One has then to rely on phenomenologi-
cal approaches where the strength of the vector potential
is artificially suppressed, e.g. by the introduction of addi-
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Fig. 9. Nucleon optical potential in nuclear matter at ρ0. On
the left side, DBHF calculations for symmetric nuclear mat-
ter from [20] and [23] are compared to the phenomenological
models NL3 and D3C [61] and to the p-A scattering analysis
of [56]. The right panel compares the iso-vector optical po-
tential from DBHF [26] and BHF [62] to phenomenological
RMF [63], Gogny and Skyrme forces and to a relativistic T −ρ

approximation [64].

tional form factors [59] or by energy-dependent terms in
the QHD Lagrangian [61] (D3C model in fig. 9).

The isospin dependence, expressed by the isovector op-
tical potential Uiso = (Uopt,n − Uopt,p)/(2β) is much less
constrained by data. The knowledge of this quantity is,
however, of high importance for the forthcoming radioac-
tive beam experiments. The right panel of fig. 9 com-
pares the predictions from DBHF [26] and BHF [62] to the
phenomenological Gogny and Skyrme (SkM∗ and SkLya)
forces and a relativistic T − ρ approximation [64] based
on empirical NN scattering amplitudes [65]. At large mo-
menta, DBHF agrees with the tree-level results of [64].
While the dependence of Uiso on the asymmetry param-
eter β is found to be rather weak [26,62], the predicted
energy and density dependences are quite different, in par-
ticular between the microscopic and the phenomenologi-
cal approaches. The energy dependence of Uiso is very lit-
tle constrained by data. The old analysis of optical po-
tentials of scattering on charge asymmetric targets by
Lane [66] is consistent with a decreasing potential as pre-
dicted by DBHF/BHF, while more recent analyses based
on Dirac phenomenology [67] come to the opposite con-
clusions. RMF models show a linearly increasing energy
dependence of Uiso (i.e., quadratic in k) like SkLya, how-
ever generally with a smaller slope (see discussion in [44]).
To clarify this question certainly more experimental efforts
are necessary.

4 Transport models

The difficulty to extract information on the EOS from
heavy-ion reactions lies in the fact that the colliding sys-
tem is over a large time span of the reaction out of global
and even local equilibrium. At intermediate energies the
relaxation time needed to equilibrate coincides more or
less with the high-density phase of the reaction. Hence,
non-equilibrium effects are present all over the compres-
sion phase where one essentially intends to study the EOS
at supra-normal densities. Experimental evidences for in-
complete equilibration even in central collisions have been
found by isospin tracing of projectile and target nuclei [68]
and by different variances of longitudinal and transverse
rapidity distributions [69]. To account for the temporal
space-time evolution of the reactions requires dynamical
approaches which are based on kinetic transport theory.
In the following we briefly discuss the various approaches
which are mainly used in order to describe the reaction
dynamics at low and intermediate energies.

4.1 Boltzmann-type kinetic equations

The theoretical basis for the description of the collision
dynamics at energies ranging from the Fermi regime up
to 1–2AGeV is the hadronic non-equilibrium quantum
transport field theory [70]. The starting point of non-
equilibrium QFT is the Schwinger-Keldysh formalism for
many-body Green’s functions in non-equilibrium configu-
rations. The one-body Green’s function is defined as the
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expectation value of the time-ordered product of fermionic
field operators G(1, 1′) = (−i)〈Tsk(Ψ(1)Ψ̄(1′))〉, where Tsk
defines the temporal sequence of the field operators. In
non-equilibrium, time reversal invariance is violated and
thus the application of Tsk leads to four possible combi-
nations [70]:

Gc = −i〈T c[Ψ(1)Ψ(1′)]〉, Ga = −i〈T a[Ψ(1)Ψ(1′)]〉,
G> = −i〈Ψ(1)Ψ(1′)〉, G< = i〈Ψ(1′)Ψ(1)〉, (7)

where T c (T a) is the causal (anti-causal) time-ordering
operator. The physical quantity of interest is the correla-
tion function G< since it corresponds in the equal time
limit to the density limt

1′
→t1 G

<(1, 1′) = (+i)ρ(x1,x1′ , t).
However, the four Green’s functions are related through
equations of motion (Kadanoff-Baym equations) for the
correlation G<,> and the retarded and advanced G± func-
tions (the retarded and advanced Green’s functions are
defined via G+,− = Gc − G<,> = G>,< − Ga). From the
Kadanoff-Baym equations one obtains a kinetic equation
for the correlation function G<:

DG<−G<D∗−
(

ReΣ+G<−G<ReΣ+
)

−
(

Σ<ReG+

−ReG+Σ<
)

=
1

2

(

Σ>G<+G<Σ>−Σ<G>−G>Σ<
)

. (8)

Here D = −i∂x1
/2M is the Schrödinger operator or,

in a relativistic framework, the Dirac operator (D =
iγµ∂x1

−M) and Σ<,>,± are the self-energies. The intro-
duction of retarded and advanced functions allows to in-
terpret the real part of the retarded self-energy as a mean
field while the imaginary part describes the absorption or
finite life times of quasi-particles (dressed nucleons) [70].
The self-energy Σ contains all higher-order correlations
and couples the one-body kinetic equation (8) to the corre-
sponding equations for the two- and 3-body densities and
so forth. This requires to truncate the Dyson-Schwinger
hierarchy which is usually done at the two-body level and
leads to the ladder approximation for the T -matrix, i.e.
the Bethe-Salpeter equation.

The formal structure of the kinetic equation (8) is
complex and one should solve (8) together with the cor-
responding kinetic equations for G± which describe the
spectral properties of the phase space distribution. Simul-
taneously, the self-energies should be derived for arbri-
trary non-equilibrium situations [70]. A solution of the
full self-consistency problem has not yet been achieved.
In practice, one applies further approximations. The
most important ones are the gradient expansion (a semi-
classical approximation to first order in h̄) and the quasi-
particle approximation which sets the particles on mass
shell. The result is a Boltzmann-type transport equa-
tion, which is known as the Boltzmann-Uheling-Uhlenbeck
(BUU) transport equation [71]. In its relativistic form the
(R)BUU equation reads
[

(m∗D∂
µ
xm

∗
D−k∗ν∂µxk∗ν) ∂kµ−(m∗D∂

µ
km

∗
D−k∗ν∂µk k∗ν) ∂xµ

]

f

=
1

2(2π)8

∫

d3k2

E∗k2

d3k3

E∗k3

d3k4

E∗k4

W δ4 (k + k2 − k3 − k4)

×
[

f3f4 (1− f) (1− f2)− ff2 (1− f3) (1− f4)
]

, (9)

which describes the phase space evolution of the 1-particle
distribution f(x,k, t) under the influence of the mean
field (which enters via the real part of the self-energy,
i.e. via m∗D = M − ΣS and k∗µ = kµ − Σµ) and bi-
nary collisions determined by the transition amplitude
W = m∗4D |T (kk2|k3k4)|2. Final-state Pauli blocking is ac-
counted for by the blocking factors (1 − fi) in (9) with
fi = f(x,ki, t). The physical parameters entering into the
kinetic equation are the mean field, i.e. the nuclear EOS,
and elementary cross-sections for 2-particle scattering pro-
cesses. Thus, one can test the high-density behavior of the
nuclear EOS in heavy-ion collisions and the in-medium
modifications of cross-sections, which also influence the
stopping properties of the colliding system. Above the
pion threshold where inelastic processes start to play an
important role, eq. (9) becomes a coupled-channel prob-
lem for nucleonic, nucleon resonance and mesonic degrees
of freedom. The collision integral, i.e. the right-hand side
of eq. (9) has to be extended for the corresponding in-
elastic and absorptive processes and the new degrees of
freedom must be propagated in their mean fields. In prac-
tice, the transport equation is solved within the test par-
ticle method which describes the phase space distribution
f as an incoherent sum of point-like quasi-particles [71] or
static Gaussians [72] which propagate on classical trajec-
tories. Relativistic formulations of the two methods were
developed in refs. [73] and [74].

4.2 Quantum molecular dynamics (QMD)

An alternative approach to the kinetic BUU equation is
quantum molecular dynamics (QMD) [75–77]. QMD is a
N -body approach which simulates heavy-ion reactions on
an event-by-event basis taking fluctuations and correla-
tions into account. The QMD equations are formally de-
rived from the assumption that the N -body wave function
Φ can be represented as the direct product of single co-
herent states Φ =

∏

i φi which are described by Gaussian
wave packets. Anti-symmetrization is not taken into ac-
count. A Wigner transformation yields the corresponding
phase space representation of Φ. The equations of motion
of the many-body system are obtained by the variational
principle starting from the action S =

∫

L[Φ,Φ∗] (with the

Lagrangian functional L = 〈Φ|ih̄ d
dt
−H|Φ〉). The Hamil-

tonian H contains a kinetic contribution and mutual two-
body interactions Vij . The variational principle leads fi-
nally to classical equations of motion for the generalized
coordinates qi and ki of the Gaussian wave packets

q̇i =
ki

m
+∇ki

∑

j 6=i

〈Vij〉 = ∇ki
〈H〉 ,

k̇i = −∇qi

∑

j 6=i

〈Vij〉 = ∇qi
〈H〉 .

The two-body interaction Vij can, e.g., be taken from BHF
calculations [77] or from local Skyrme forces which are
usually supplemented by an empirical momentum depen-
dence in order to account for the energy dependence of the
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optical nucleon-nucleus potential [75]. Binary collisions
are treated in the same way as in BUU models. Further-
more, there exist relativistic extensions, i.e. RQMD and
the UrQMD model which has been developed to simulate
heavy-ion collisions at ultra-relativistic energies [76,78].

4.3 Antisymmetrized molecular dynamics
(AMD/FMD)

An extension of QMD, in particular designed for low
energies, are the antisymmetrized molecular dynamics
(AMD) [79] and fermionic molecular dynamics (FMD) ap-
proaches [80]. In contrast to conventional QMD, the inter-
acting system is represented by an antisymmetrized many-
body wave function consisting of single-particle states
which are localized in phase space. The equations of mo-
tion for the parameters characterizing the many-body
state (e.g., position, momentum, width and spin of the
particles) are derived from a quantum variational prin-
ciple. The models are designed to describe ground-state
properties of nuclei as well as heavy-ion reactions at low
energies (see also the contribution by Ono et al. [81]).

4.4 Off-shell transport

Essential for the validity of the classical equations of mo-
tion is the quasi-particle approximation (QPA) which as-
sumes that the spectral strength of a hadron is concen-
trated around its quasi-particle pole. Particle widths can,
however, dramatically change in a dense hadronic envi-
ronment. To first order in density, the in-medium width
of a hadron in nuclear matter can be estimated by the
collision width Γ tot = Γ vac + Γ coll, Γ coll = γvσρB with
v the hadron velocity relative to the surrounding matter
and σ the total hadron-nucleon cross-section. A consistent
treatment of the off-shell dynamics, i.e. a solution of the
quantum evolution equations for the correlation functions
G<,> has up to now only been performed for toy models
and simplified geometries [82,83] or in first-order gradi-
ent approximation leading to an extended quasi-particle
picture [84]. Comparing the non-local extension of BUU
with standard simulations a visible effect of non-local cor-
relations is seen and a better agreement with measured
charge density distributions [85] or particle spectra [86]
due to the virial corrections has been found. To develop a
consistent lattice quantum transport for non-uniform sys-
tems and realistic interactions will be one of the future
challenges in theoretical heavy-ion physics.

On the other hand, substantial progress has been made
in recent years to map part of the off-shell dynamics on
a modified test particle formalism [87,88]. This allows to
apply off-shell dynamics, although in a simplified form,
to the complex space-time evolution of a heavy-ion reac-
tion. The present knowledge of off-shell matrix elements is,
however, rather limited and theoretical investigations are
scarce [89]. The off-shell T -matrix has been used in order
to calculate the duration and non-locality of a nucleon-
nucleon collision [90]. The question to what degree a deple-
tion of the Fermi surface due to particle-hole excitations

and the high-momentum tails of the nuclear spectral func-
tions will affect subthreshold particle production is not so
obvious to answer. The high-momentum tails correspond
to deeply bound states which are off-shell and to treat
such states in a standard transport approach like on-shell
quasi-particles would violate energy-momentum conser-
vation. Energy-momentum conservation can be achieved
consistently by the non-local kinetic theory [91] taking
into account first-order off-shell effects. The contribution
of the nuclear short-range correlations to subthresholdK+

production in p + A reactions have, e.g., been estimated
in [92]. The removal energy for a high-momentum state
compensates the naively expected energy gain and the
short-range correlations do therefore not significantly con-
tribute to subthreshold particle production [92]. The sit-
uation changes, however, when the medium is heated up
and high-momentum particles become on-shell or when
the spectral distributions of the produced hadrons them-
selves are broadened.

5 Constraints from heavy-ion collisions

5.1 Flow and stopping

One of the most important observables to constrain the
nuclear forces and the underlying EOS at supra-normal
densities is the collective nucleon flow [93]. It can be char-
acterized in terms of anisotropies of the azimuthal emis-
sion pattern. Expressed in terms of a Fourier series

dN

dφ
∝ 1 + 2v1 cos(φ) + 2v2 cos(2φ) + . . . (10)

this allows a transparent interpretation of the coefficients
v1 and v2. The dipole term v1 arises from a collective side-
ward deflection of the particles in the reaction plane and
characterizes the transverse flow in the reaction plane. The
second harmonics describes the emission pattern perpen-
dicular to the reaction plane. For negative v2 one has a
preferential out-of-plane emission. The phenomenon of an
out-of-plane enhancement of particle emission at midra-
pidity is called squeeze-out.

The transverse flow v1 has been found to be sensitive
to the EOS and, in particular in peripheral reactions, to
the momentum dependence of the mean field [57,58]. The
elliptic flow v2, in contrast, is very sensitive to the max-
imal compression reached in the early phase of a heavy-
ion reaction. The crossover from preferential out-off-plane
flow (v2 < 0) to preferential in-plane flow (v2 > 0) around
4–6AGeV has also led to speculations about a phase tran-
sition in this energy region which goes along with a soft-
ening of the EOS [94].

The present situation between theory and experiment
is illustrated in fig. 10 (from [95]). The BUU studies from
Danielewicz et al. and the Giessen group (Larionov et al.)
investigated the EOS dependence while Persram et al.
find a sensitivity of v2 to the medium dependence of the
NN cross-sections. Finally, non-equilibrium effects have
been investigated at the level of the effective interaction
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Fig. 10. Elliptic flow excitation function at SIS energies. Var-
ious theoretical studies using different EOSs (a,b), or differ-
ent cross-sections (c) or DBHF mean fields in the LDA ap-
proach and including further non-equilibrium effects (ACNM)
(d) are compared to FOPI data (symbols). The figure is taken
from [95].

in [58,96]. It has been found that the local phase space
anisotropies of the pre-equilibrium stages of the reactions
reduce the repulsion of the mean field and soften the cor-
responding EOS which allows a good description of the
v2 data using microscopic DBHF mean fields (Gaitanos et
al.). However, fig. 10 also demonstrates that v2 is gener-
ated by the interplay of the mean field and binary colli-
sions which makes it difficult to extract exclusive informa-
tion on the EOS from the data. Here certainly furthergoing
studies are required.

The following figure (fig. 11) is based on the studies
of Danielewicz et al. [97]. It summarizes the status ob-
tained within this model in terms of a band that represents
the constraints from collective flow data. It is obtained
from a compilation of analyses of sideward and elliptic
anisotropies, studied at energies ranging from low SIS
(Elab ' 0.2–2AGeV) up to top AGS energies (Elab ' 2–
11AGeV). The conclusion of this study was that both,
super-soft equations of state (K = 167MeV) as well as
hard EOSs (K > 300MeV), are ruled out by the data. At
SIS energies, existing flow data are consistent with a soft
EOS [98,57] as, e.g., the soft Skyrme EOS. In the models
used by Danielewicz et al. [57,97], sideward flow favors a
rather soft EOS withK = 210MeV while the development
of the elliptic flow requires slightly higher pressures. The
BHF and variational calculations including 3-body forces3

fit well into the constrained area up to 4ρ0. At higher den-

3 For the BHF + 3-BF calculation the pressure shown in
fig. 11 has been determined from the parameterization given
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Fig. 11. Constraints on the nuclear EOS from heavy-ion flow
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compatible with heavy-ion flow data according the analysis
on [97]. The equations of state from the models shown in fig. 3
are displayed.

sities the microscopic EOSs, also DBHF, tend to be too
repulsive. However, conclusions from flow data are gen-
erally complicated by the interplay of the compressional
part of the nuclear EOS and the momentum dependence
of the nuclear forces. A detailed comparison to v1 and v2

data from FOPI [99,100] and KaoS [101] for v1 and v2

below 1AGeV favors again a relatively soft EOS with a
momentum dependence close to that obtained from mi-
croscopic DBHF calculations [57,58,102]. In fig. 11, the
microscopic DBHF EOS (K = 230MeV) lies at the up-
per edge of the boundary but is still consistent with it
in the density range tested at SIS energies, i.e. up to at
most 3ρ0. This fact is further consistent with the findings
of Gaitanos et al. [58,102] where a good description of v1

and v2 data at energies between 0.2 and 0.8AGeV has
been found in RBUU calculations based on DBHF mean
fields. As pointed out in [58,96,102] it is thereby essential
to account for non-equilibrium effects and the momentum
dependence of the forces which softens the EOS compared
to the equilibrium case (shown in fig. 11).

As can be seen from fig. 10, not only the nuclear EOS,
but also the cross-sections for elementary 2-particle scat-
tering influences the collective dynamics, in particular, the
degree of stopping and hence the maximum compression
achieved in the fireball region. A challenge in this context
is to reach a quantitative understanding of the recently
observed strong correlations between maximum side flow
v1 and maximum stopping in the two excitation func-
tions [69] (see also the contribution by A. Andronic et
al. [103]). Most collective flow analyses performed so far
were based on free cross-sections which works astonish-
ingly well from a practical point of view. However, within
a consistent picture one should treat the in-medium ef-

in [19] which is based on the Urbana IX 3-BF different to that
used in [18].
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fects in both, the real (nuclear EOS) and the imaginary
part (cross-sections) of the interaction, on the same foot-
ing. Many-body calculations (BHF/DBHF) predict an es-
sential reduction of the elastic NN cross-section with in-
creasing baryon density [77,104,89] and in [105] a similar
reduction was proposed for the inelastic channels in order
to describe pion multiplicities in the 1–2AGeV region.
One can, therefore, expect observable signals in heavy-
ion collisions. In fact, recent QMD studies of stopping
and transparency observables have shown that the data
can be reproduced when the free cross-section is reduced
by a factor of 0.5 [106]. These findings are supported by
transport calculations using microscopic in-medium cross-
sections [107,108]. Therefore, for a reliable extraction of
the high-density nuclear EOS one should account for in-
medium effects not only in the potential but also in the
cross-sections.

5.1.1 Isospin dependence of the EOS

Another important aspect of heavy-ion collisions is the
investigation of the density dependence of the EOS for
asymmetric matter. There exist abundent studies on this
sector, either non-relativistically or relativistically.

The momentum dependence of the isovector potential,
fig. 9, which is also closely related to the proton/neutron
mass splitting of both, the non-relativistic m∗NR and the
Dirac m∗D effective mass, is one of the key questions which
can be addressed by nuclear reactions induced by neutron-
rich nuclei at RIA energies. Transverse and elliptic flow
patterns as well p/n rapidity dsitributions have been sug-
gested as possible observables to investigate the momen-
tum dependence and the p/n mass splitting [109–111].

Promising observables to pin down the density depen-
dence of the symmetry energy are the iso-scaling behavior
of fragment yields and the isospin diffusion in asymmetric
colliding systems. In both cases recent NSCL-MSU data
in combination with transport calculations are consistent
with a value of Esym ≈ 31 at ρ0 and rule out extremely
“stiff” and “soft” density dependences of the symmetry
energy [112,113] (see also the contribution IV.1 by M. Di
Toro et al. [114]). The same value has been extracted [115]
from low-energy elastic and (p, n) charge exchange reac-
tions on isobaric analog states, i.e. p(6He, 6Li∗)n mea-
sured at the HMI. Such a behavior is also consistent with
the predictions from many-body theory [15,26]. Also the
p/n ratio at mid-rapidity has been found to be sensitive
to the high-density behavior of the nuclear symmetry en-
ergy [116].

In relativistic approaches, large attractive scalar and
repulsive vector fields are required by Dirac phenomenol-
ogy in order to describe simultaneously the central poten-
tial and the strong spin-orbit force in finite nuclei [8,9,
12]. The situation is, however, less clear in the iso-vector
sector. There exist different possibilities to reproduce the
same value of the a4 coefficient (4): a) by only an iso-vector
vector ρ field like in most RMF models (NL3 etc.), or b) by
accounting for an additional iso-vector scalar δ field. Due
to competing effects between attractive (scalar δ) and re-
pulsive (vector ρ) fields, both alternatives can be fitted to

the same empirical a4 parameter. However, the inclusion
of δ field leads to an essentially different high-density be-
havior of the symmetry energy [117]. The scalar δ field
is suppressed at high densities, whereas the vector field
is proportional to the baryon density which makes the
symmetry energy stiffer at supra-normal densities. Recent
transport studies have shown that these subtle relativistic
effects can be observed in the intermediate-energy range
by means of collective isospin flow, particle ratios and im-
balance ratios of different particle species (protons, neu-
trons, pions and kaons) [117,111,44]. However, due to the
lack of precise experimental data, no definitive conclusions
could be drawn so far.

5.2 Particle production

5.2.1 Pions

With the start of the first relativistic heavy-ion programs
the hope was that particle production would provide a
direct experimental access to the nuclear EOS [118]. At
twice saturation density which is reached in the partici-
pant zone of the reactions without additional compression,
the difference between the soft and hard EOS shown in
fig. 3 is about 13MeV in binding energy. If the matter is
compressed up to 3ρ0 the difference is already ∼ 55MeV.
It was expected that the compressional energy should be
released into the creation of new particles, primarily pi-
ons, when the matter expands [118]. However, pions have
large absorption cross-sections and they turned out not
to be suitable messengers of the compression phase. They
undergo several absorption cycles through nucleon reso-
nances (Nπ ↔ ∆) and freeze out at final stages of the
reaction and at low densities. Hence pions lose most of
their knowledge on the compression phase and are not
really sensitive probes for the stiffness of the EOS [119].
However, they carry information on the isotopic composi-
tion of the matter which is to some extent conserved until
freeze-out. The final π−/π+ ratio was found to be sen-
sitive to the initial n/p composition of the matter which,
on the other hand, is influenced by the isospin dependence
of the nuclear forces [120,121]. In [63] a reduction of the
π−/π+ ratio was found when the δ-meson was included in
the RMF approach. The effects are, however, moderate,
i.e. at the 10–20% level, and most pronounced at extreme
phase space regions, e.g. at the high-energy tails of pt spec-
tra [63,121,122]. Systematic measurements as, e.g., from
the FOPI Collaboration may help to constrain the isospin
dependence by pionic observables.

5.2.2 Kaons

After pions turned out to fail as suitable messengers, K+-
mesons were suggested as promising tools to probe the
nuclear EOS, almost 20 years ago [124]. The cheapest way
to produce a K+-meson is the reactions NN −→ NΛK+

which has a threshold of Elab = 1.58GeV kinetic energy
for the incident nucleon. When the incident energy per
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nucleon in a heavy-ion reactions is below this values one
speaks about subthreshold kaon production. Subthreshold
kaon production is in particular interesting since it ensures
that the kaons originate from the high-density phase of the
reaction. The missing energy has to be provided either by
the Fermi motion of the nucleons or by energy accumu-
lating multi-step reactions. Both processes exclude signifi-
cant distortions from surface effects if one goes sufficiently
far below threshold. In combination with the long mean
free path subthreshold K+ production is an ideal tool to
probe compressed nuclear matter in relativistic heavy-ion
reactions.

Already in the first theoretical investigations by trans-
port models it was noticed that the K+ yield reacts rather
sensitive to the EOS [125–127]. Both, in non-relativistic
QMD calculations based on soft/hard Skyrme forces [125,
126,128] and in RBUU [127,129] with soft/hard versions
of the (non-linear) σω model the K+ yield was found
to be about a factor 2–3 larger when a soft EOS is ap-
plied compared to a hard EOS. At that time, the avail-
able data favored a soft equation of state [126,127,129].
However, at that stage the theoretical calculations were
still burdened with large uncertainties. First of all, it
was noticed [125,126] that the influence of the repul-
sive momentum-dependent part of the nuclear interac-
tion leads to a strong suppression of the kaon abundances
which made a quantitative description of the available
data more difficult. Moreover, at that time the pion-
induced reaction channels πB −→ Y K+ have not yet
been taken into account. These additional channels which
contribute up to 30–50% to the total yield enabled to
explain the measured yields with realistic momentum-
dependent interactions [128,130]. A breakthrough was
achieved when the COSY-11 Collaboration measured the
pp −→ pK+Λ reactions at threshold [131] which con-
strains the strangeness production cross-sections NN −→
NK+Y . Within the last decade the KaoS Collaboration
has performed systematic measurements of the K+ pro-
duction far below threshold [119,132,133]. Based on the
new data situation, the question if valuable information
on the nuclear EOS can be extracted has been revisited
and it has been shown that subthreshold K+ production
provides indeed a suitable and reliable tool for this pur-
pose [134–136].

Figure 12 compares measured K+ multiplicities as a
function of the number of participating nucleons, Apart, in
Au+Au, Ni+Ni, C+Au and C+C reactions at 1AGeV to
QMD calculation using a soft/hard momentum-dependent
Skyrme force [123]. This figure demonstrates thereby the
interplay between Apart, system size and EOS. A signifi-
cant dependence of the kaon multiplicities on the nuclear
EOS requires a large amount of collectivity which is eas-
iest reached in central reactions of heavy-mass systems.
Consequently, the EOS dependence is most pronounced in
central Au+Au reactions. Also in Ni+Ni effects are still
sizable while the small C+C system is completely insen-
sitive to the nuclear EOS even in most central reactions.
The data available for Au+Au and Ni+Ni support the
soft EOS. Of particular interest is, in this context, the

Fig. 12. K+ multiplicities in inclusive C+C, Ni+Ni, Au+Au
and C+Au reactions at 1AGeV. QMD calculations using a
hard/soft nuclear EOS are compared to KaoS data [123]. The
figure is taken from [123].

asymmetric C+Au system: although in central C+Au re-
actions the number of participants is comparable to that
in Ni+Ni, the K+ yield does not depend on the EOS. This
indicates again that a sensitivity to the EOS is not only
a question of Apart but also of the compression which can
be reached by the colliding system.

The next step is to consider now the energy depen-
dence of the EOS effect. It is expected to be most pro-
nounced far below threshold because there the highest
degree of collectivity, reflected in multi-step collisions, is
necessary to overcome the production thresholds. The ef-
fects become even more evident when the ratio R of the
kaon multiplicities obtained in Au+Au over C+C reac-
tions (normalized to the corresponding mass numbers) is
considered [135,133]. Such a ratio has, moreover, the ad-
vantage that possible uncertainties which might still exist
in the theoretical calculations should cancel out to a large
extent. This ratio is shown in fig. 13. Both, soft and hard
EOS, show an increase of R with decreasing energy. How-
ever, this increase is much less pronounced when the stiff
EOS is employed. The strong increase of R can be directly
related to a higher compressibility of nuclear matter. The
comparison with the experimental data from KaoS [133],
where the increase of R is even more pronounced, strongly
favors a soft equation of state. These findings were con-
firmed by independent IQMD transport calculations of the
Nantes group [136]. Both, QMD and IQMD included also
a repulsive kaon-nucleon potential as predicted by chiral
perturbation theory [134]. The shaded area in the figure
can be taken as the existing range of uncertainty in the
theoretical model description of the considered observable.
To estimate the stability of the conclusions, the IQMD
calculations have been repeated with an alternative set of
N∆;∆∆ 7→ NYK+ cross-sections4 which are almost one
order of magnitude smaller than those used originally, but
the EOS dependence remained stable [137].

4 Cross-sections which involve ∆ resonances in the initial or
final states are not constrained by measurements.
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Fig. 13. Excitation function of the ratio R of K+ multi-
plicities obtained in inclusive Au+Au over C+C reactions.
QMD [135] and IQMD calculations [136] are compared to the
KaoS data [133]. The shaded area indicates the range of un-
certainty in the theoretical models. In addition, IQMD results
based on an alternative set of elementaryK+ production cross-
sections are shown.

6 Constraints from neutron stars

Measurements of “extreme” values, like large masses or
radii, huge luminosities etc. as provided by compact stars
offer good opportunities to gain deeper insight into the
physics of matter under extreme conditions. There has
been substantial progress in recent time from the astro-
physical side.

The most spectacular observation was probably the
recent measurements on PSR J0751+1807, a millisecond
pulsar in a binary system with a helium white dwarf sec-
ondary, which implies a pulsar mass of 2.1± 0.2(+0.4

−0.5)M¯

with 1σ (2σ) confidence [138]. Therefore, a reliable EOS
has to describe neutron star (NS) masses of at least
1.9 M¯ (1σ) in a strong, or 1.6 M¯ (2σ) in a weak in-
terpretation. This condition limits the softness of EOS in
NS matter. One might therefore be worried about an ap-
parent contradiction between the constraints derived from
neutron stars and those from heavy-ion reactions. While
heavy-ion reactions favor a soft EOS, PSR J0751+1807
requires a stiff EOS. The corresponding constraints are,
however, complementary rather than contradictory. In-
termediate energy heavy-ion reactions, e.g. subthreshold
kaon production, constrains the EOS at densities up to
2–3ρ0 while the maximum NS mass is more sensitive to
the high-density behavior of the EOS. Combining the two
constraints implies that the EOS should be soft at mod-
erate densities and stiff at high densities. Such a behavior
is predicted by microscopic many-body calculations (see
fig. 3). DBHF, BHF or variational calculations, typically,
lead to maximum NS masses between 2.1–2.3 M¯ and are
therefore in accordance with PSR J0751+1807 [139].

There exist several other constraints on the nuclear
EOS which can be derived from observations of compact
stars, see, e.g., [139–141]. Among these, the most promis-
ing one is the Direct Urca (DU) process which is essen-
tially driven by the proton fraction inside the NS [142].
DU processes, e.g. the neutron β-decay n→ p+ e− + ν̄e,
are very efficient regarding their neutrino production, even
in superfluid NM [143,144], and cool NSs too fast to be
in accordance with data from thermally observable NSs.
Therefore, one can suppose that no DU processes should
occur below the upper mass limit for “typical” NSs, i.e.
MDU ≥ 1.5M¯ (1.35M¯ in a weak interpretation). These
limits come from a population synthesis of young, nearby
NSs [145] and masses of NS binaries [138].

7 Summary and outlook

The quest for the nuclear equation of state is one of
the longstanding problems in physics which has a history
of more than 50 years in nuclear structure. Since about
30 years, one tries to attack this question with heavy-ion
reactions. The exploration of the limits of stability, i.e.
the regimes of extreme isospin asymmetry, is a relatively
new field with rapidly growing importance in view of the
forthcoming generation of radioactive beam facilities.

The status of theoretical models which make predic-
tions for the EOS can roughly be summarized as follows:
phenomenological density functionals such as the Skyrme,
Gogny or relativistic mean-field models provide high preci-
sion fits to the nuclear chart but extrapolations to supra-
normal densities or to the limits of stability are highly
uncertain. A more controlled way is provided by effective-
field theory approaches which became quite popular in
recent time. Effective chiral field theory allows, e.g., a sys-
tematic generation of two- and many-body nuclear forces.
However, these approaches are low-momentum expansions
and, when applied to the nuclear many-body problem,
low-density expansions. Ab initio calculations for the nu-
clear many-body problem such as variational or Brueckner
calculations have reached a high degree of sophistication
and can serve as guidelines for the extrapolation to the
regimes of high-density and/or large isospin asymmetry.
Possible future developments are to base such calculations
on modern EFT potentials and to achieve a more consis-
tent treatment of two- and three-body forces.

If one intends to constrain these models by nuclear
reactions one has to account for the reaction dynam-
ics by semi-classical transport models of a Boltzmann or
molecular-dynamics type. Suitable observables which have
been found to be sensitive to the nuclear EOS are directed
and elliptic collective flow patterns and particle produc-
tion, in particular kaon production, at higher energies.
Heavy-ion data suggest that the EOS of symmetric nu-
clear matter shows a soft behavior in the density regime
between one to about three times nuclear saturation den-
sity, which is consistent with the predictions from many-
body calculations. Conclusions on the EOS are, however,
complicated by the interplay between the density and the
momentum dependence of the nuclear mean field. Data
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which constrain the isospin dependence of the mean field
are still scarce. Promising observables are isospin diffu-
sion, iso-scaling of intermediate mass fragments and par-
ticle ratios (π+/π− and eventually K+/K0). Here, the
situation will certainly improve when the forthcoming ra-
dioactive beam facilities will be operating. This will also
allow to measure the optical isospin potential in p+A and
A + A reactions and to obtain more information on the
symmetry energy and the proton/neutron mass splitting
in asymmetric matter. From the theoretical side it will be
unavoidable to invest significant efforts towards the de-
velopment of quantum transport models with consistent
off-shell dynamics.

We would like to thank K. Morawetz, T. Gaitanos and M. Di
Toro for fruitful discussions.
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